Metabolic rate - Basal metabolic rate - Resting metabolic rate - NOTE

Basal metabolic rate (BMR), and the closely related resting metabolic rate (RMR), is the amount of energy expended while at rest in a neutrally temperate environment, in the post-absorptive state (meaning that the digestive system is inactive, which requires about twelve hours of fasting in humans). The release of energy in this state is sufficient only for the functioning of the vital organs, the heart, lungs and kidneys and the rest of the nervous system, intestine, liver, lungs, sex organs, muscles and skin. BMR decreases with age and with the loss of lean body mass. Increasing muscle mass increases BMR. Aerobic fitness level, a product of cardiovascular exercise, while previously thought to have effect on BMR, has been shown in the 1990s not to correlate with BMR, when fat-free body mass was adjusted for. New research[citation needed] has however come to light which suggests anaerobic exercise does increase resting energy consumption (see "Aerobic vs. anaerobic exercise"). Illness, previously consumed food and beverages, environmental temperature, and stress levels can affect one's overall energy expenditure as well as one's BMR.

BMR is measured under very restrictive circumstances when a person is awake. An accurate BMR measurement requires that the person's sympathetic nervous system not be stimulated, such a condition whose prerequisite is that of complete rest. A more common and closely related measurement, used under less strict conditions, is resting metabolic rate (RMR).

BMR and RMR are measured by gas analysis through either direct or indirect calorimetry, though a rough estimation can be acquired through an equation using age, sex, height, and weight. Studies of energy metabolism using both methods provide convincing evidence for the validity of the respiratory quotient (R.Q.), which measures the inherent composition and utilization of carbohydrates, fats and proteins as they are converted to energy substrate units that can be used by the body as energy. Studies conducted by Spennewyn in 1990 found strong correlations between lean mass and metabolism based on indirect calorimetry measurements. Spennewyn discovered that lean tissue in men and women required approximately 16 calories per pound per day. Thus, once a lean mass was known it could be multiplied by 16 to reveal daily caloric needs based on the activity level of the individual. This method has been used in many health club environments to determine daily caloric needs.

http://en.wikipedia.org/wiki/Metabolic_rate

About Shiva Rajaya

You are the master of your life! Your destiny is in your hands! You have the power to create! Want my help with unleashing your full manifesting power and optimizing your life? I will help you tune into your highest frequency and give you tools to access your untapped potentials - Start here START HERE! GET YOUR POWER KICK SKYPE COACHING SESSION WITH ME!